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ABSTRACT: The infrared (IR) spectra of 15 drugs of abuse were analyzed for similarity by
using techniques of numerical taxonomy. The study included six barbiturates (amobarbital,
barbital, butabarbital, pentobarbital, phenobarbital, and secobarbital), four amphetamine-
related compounds (amphetamine, ephedrine, methamphetamine, and phentermine), and five
other drugs (cocaine, heroin, phencyclidine, phendimetrazine, and diazepam). Three character
sets were based on increasing numbers (10, 24, and 36) of JR peaks. The cluster analysis,
principal component analysis, and nonmetric multidimensional scaling elements of the pro-
gram system NT-SYS were used to structure taxonomic distances between drugs. Best results
were obtained from the 36-peak data set; ordination diagrams proved to be more visually
informative than phenograms. Preliminary results from our analysis of this set of drugs indi-
cate that an expanded multivariate approach to drug classification may be useful.
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The number of drugs and drug combinations submitted to forensic science laboratories
for analysis has increased rapidly during the past decade. The Drug Enforcement Agency
of the U.S. Department of Justice now lists over 10 000 controlled drugs and drug combi-
nations on the market [1]. In addition to controlled drugs, new clandestinely prepared
drug mixtures appear on the streets each month.

Identification of these drugs has become an increasingly difficult analytical problem,
eased somewhat by the development of new technology. Infrared (IR) spectrophotometry
and gas chromatography/mass spectroscopy are useful tools for the characterization of
drug samples, but not all laboratories possess the necessary facilities, such as complete
reference files for standard drug spectra. Even when large numbers of spectra are avail-
able for comparison, a manual search of voluminous card files is time-consuming and
tedious. Attempts have been made to develop simple, rapid systems for the identification
of IR spectra of the most commonly encountered drugs [2,3]. Such systems involve the
comparison of three to eight of the most intense absorption bands of an unknown spectrum
with a table or reference spectra arranged by decreasing intensity of absorption bands.
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These systems are helpful, but they are often difficult to use and always require a final,
visual comparison with a standard reference spectrum.

Automated file-searching programs have been developed for use with high-speed com-
puters capable of rapidly searching files containing as many as 10 000 IR spectra coded
on cards or magnetic tape [4—16]. The end result of this search is a match, near match,
or correlation of an unknown with one or more reference compounds. These systems are
oriented strictly toward providing an identjfication rather than a general-purpose class jfi-
cation [17—20].

The classification of drugs is a problem complementary to that of identification. To
classify for general purposes one gathers as much data as possible from the objects (for
example, drugs) to be classified. Evaluation of the data by operational techniques opti-
mally yields a classification into groups (for example, barbiturates) whose members have
characteristics in common. These groups or taxa should be robust enough to survive the
discovery and incorporation of new data. Further, the jointly held features of such taxa
should facilitate their subsequent identification. Greater ease of identification would be
a significant benefit; identification should benefit most when the classification is based
on a firm set of data.

The present study describes a system in which the JR spectra of numerous drugs were
characterized not only for identification but also for classification, that is, to recognize
and portray the relationships between several groups of more or less closely related drugs.
We studied 15 commonly encountered drugs of abuse and used techniques of multivariate
analysis originally developed for biological taxonomy [17]. Our goals were to determine the
quantity of data necessary for an acceptable classification and to study the feasibility of
using such an approach on a much larger scale.

Materials and Methods

Operational Taxonoinic Units

The operational taxonomic units (OTUs) in this study were samples of 15 standard
drugs. Six barbiturates (amobarbital, barbital, butabarbital, pentobarbital, phenobarbital,
and secobarbital) were used; scans were prepared from free acids in KBr pellets. Four
amphetamine-related compounds (amphetamine, ephedrine, methamphetamine, and
phentermine) were prepared as the hydrochloride salts in KBr pellets. Four basic drugs
(cocaine, heroin, phencyclidine [PCP], and phendimetrazine) were also prepared in KBr
pellets as hydrochloride salts. The 15th drug, diazepam, was used as the free base in KBr.

The KBr pellets were prepared with Beckman RIIC 13-mm dye and scanned on a Beck-
man Model JR 4240 JR spectrophotometer at 600 wave numbers per minute. The standard
drug or generic name and structural formula for each OTU are shown in Fig. 1.

Characters

Three sets of data with increasing numbers of characters were obtained for the 15 drugs
by using their recorded JR spectra. Data Set 1 (the 10-peak study) consisted of the wave
numbers for the ten most intense absorption bands between 2000 and 300 wave numbers.
Data Set IJ (the 24-peak study) was obtained by subdividing the spectrum into five regions
and then recording the most intense peaks in each region. Three peaks each were taken
from Region 1 (4000-2000), Region 2 (1999-1500), and Region 5 (699-300); ten peaks
were taken from Region 3 (1499-1200) and five peaks from Region 4 (1199-700). Data
Set III (the 36-peak study) was obtained by subdividing the spectrum as in Data Set II
and then adding eight additional peaks to Region 4 (1199-700) and four peaks to Region 5
(699—300). There were no missing elements in the data tables.
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FIG. I —Structuralform u/as for the 15 standard drugs.

Data Processing

Computations were carried out in the batch mode via a remote job-entry station to an
IBM 370/168 VS2 computer by using the Stony Brook numerical taxonomy system NT-SYS
(Version 3, Modification Level 2 [1]). Both Q- and R-mode analyses were applied to the
data [22].

Character readings were standardized by variance [17]. For Q-mode analysis, both
taxonomic distances and correlations were found and structured by the cluster analysis,
minimum spanning tree (MST), and "subsets" components of NT-SYS. Cluster analysis
was done by the unweighted pair group method using average linkage (UPGMA), the
MST was done by the method described by Prim [23], and the subsets were formed by
using the method of Sale [24]. Phenograms obtained from cluster analysis were dia-
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grammed but used mainly to show general trends because of their inherent distortions.
Clusters were designated by the method of Rohlf {251 in which three periods separate
the first and last cluster members in the linear sequence in which they appear in the
phenogram.

For R-mode analysis, correlations between characters were subjected to principal com-
ponent analysis (PCA), with components extracted until eigenvalues became less than 1.0.
Our choice of PCA over other techniques of factor analysis was determined by the results
of Fisher [26], who found that PCA tended to find relatively few underlying factors of
variation with high factor loadings and reasonable biological interpretation. A matrix of
OTU projections in PCA space was obtained but used primarily as a starting point for
nonmetric multidimensional scaling (MDS) (27]. Taking an initial configuration from a
PCA solution helps to avoid both the possibility of MDS entrapment in local minima
and the tendency for PCA illustrations to portray close-relative similarities less accurately
than distant-relative ones [28.29]. The OTU configurations in MDS three-space were
adjusted after scaling by performing a PCA on a variance-covariance matrix obtained
from the MDS coordinates. This procedure realigns major trends of variation in the re-
duced configuration space with the coordinate axes while maintaining the accuracy of
distances between OTUs in the ordination space [21]. Distances between OTUs in the
MDS ordination space were compared with the Q-mode taxonomic distance matrix by
using the matrix correlation coefficient. Two-dimensional ordination diagrams were con-
structed with superimposed MST and subsets connections, thus combining Q- and R-
mode results in a visually informative manner.

Results

Data Set I

The phenogram based on ten readings (Fig. 2) includes clusters that are generally ac-
ceptable. The barbiturates join as a cohesive unit (OTUs 9 through 14), but this unit
also includes heroin (OTU 2). The four amphetamines cluster together (OTUs 5 through
8), with the inclusion of phendimetrazine (OTU 4). The remaining drugs join the pheno-
gram at relatively low levels. The inclusion of cocaine with the barbiturates seems un-
desirable; although one generally cannot place a great deal of faith in the lowest clustering
levels of a phenogram, cocaine does link with amobarbital via the minimum spanning
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FIG. 2—Phenogram based on cluster analysis of taxonomic distances from 10-peak infrared spec-
trum absorption bands of ephedrine hydrochloride. Matrix correlation is r 0.844.
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tree (Fig. 3). The cluster formed by PCP and diazepam seems difficult to justify. One
would expect the latter to cluster with the barbiturates (OTUs 9 through 14) on the
basis of chemical structure.

The ordination diagram for this data set (Fig. 3) shows a generally good picture of
barbiturate relationships, with the questionable inclusion of heroin (OTU 2) as the nearest
neighbor of pentobarbital (OTU 13). The amphetamines (OTUs 5 through 8) are not as
well shown, with phentermine (OTU 6) linking to PCP (OTU 3). The remaining drugs
(OTUs 1, 3, 4, and 15) are shown as outliers.

Data Set II

The phenogram based on 24 spectral readings (Fig. 4) is a considerable improvement
over Fig. 2. The barbiturates (OTUs 9 through 14) form a cluster that no longer includes
heroin (OTU 2). Three of the amphetamines (OTUs 5 through 7) form a tight cluster,
but ephedrine (OTU 8) clusters with phendimetrazine (OTU 4). Cocaine, heroin, diazepam,
and PCP join the phenogram at low levels of similarity.

The ordination diagram (Fig. 5) indicates a tight cluster of barbiturates (OTUs 9 through
14) near the origin. Three of the amphetamines (OTUs 5 through 7) are on the right, with
less satisfactory placement of ephedrine (OTU 8). As in the phenogram, the remaining
OTUs are outliers. Diazepam (OTU 15) links with phendimetrazirie (OTU 4) in closer
proximity to the barbiturate cluster.

Data Set III

The phenogram based on 36 readings (Fig. 6) is generally comparable to that based on
24 (Fig. 4), but the UPGMA clusters are somewhat more diffuse. A barbiturate cluster is
evident (OTUs 9 through 14), but it includes phendimetrazine. The same three ampheta-
mines cluster (OTUs 5 through 7) but are again separated from ephedrine (OTU 8). Co-

FIG. 3—Ordination diagram based on nonmetric multidimensional scaling of taxonomic distances
from 10-peak infrared spectrum absorption bands. Matrix correlation is r 0.877. stresS = 0.363.
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FIG. 4—Phenogram obtained as in Fig. 2. based on 24-peak infrared spectrum absorption bands.
Matrix correlation is r = 0.876.

caine, heroin, and PCP join at the lowest level, while diazepam appears to be intermediate
between the barbiturates and amphetamines.

The ordination diagram (Fig. 7) indicates a tight grouping of barbiturates (OTUs 9
through 14) near the origin. The amphetamines are placed toward the right of the dia-
gram, as in Fig. 5. The outlying placement of cocaine, heroin, PCP, and diazepam is
shown most clearly in Fig. 7; these drugs are shown to be roughly distant from all others
in the study but more closely linked to the barbiturates than to the amphetamines. Di-
azepam now connects with amobarbital (OTU 12). The 36-peak phenogram (Fig. 6)
depicts a somewhat surprising similarity between phendimetrazine and phenobarbital,

.654 1.504 .354 I.04 I.Ô54 0.904 0.54 0.604

FIG. 5—Ordination diagram obtained as in Fig. 3. based on 24-peak infrared spectrum absorption
bands. Matrix correlation is r = 0.914. stress 0.280.
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depicts a somewhat surprising similarity between phendimetrazine and phenobarbital, 
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FIG. 6—Phenogram obtained as in Fig. 2. based on 36-peak infrared spectrum absorption bands.
Matrix correlation is r = 0.855.

but the ordination diagram (Fig. 7) clearly places the former drug midway between the
amphetamine and barbiturate groups.

Discussion

We have assumed that the currently recognized groups of barbiturates and ampheta-
mines are valid. Our classification results were thus acceptable overall, with reasonably
good definition of these two major drug groups, regardless of the number of characters
used. However, a definite focusing of major groups and better separation of outliers

FIG. 7—Ordination diagram obtained as in Fig. 3, based on 36-peak infrared spectrum absorp-
tion bands. Matrix correlation is r = 0.860, stress = 0.389.
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amphetamine and barbiturate groups. 
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mines are valid, Our classification results were thus acceptable overall, with reasonably 
good definition of these two major drug groups, regardless of the number of characters 
used. However, a definite focusing of major groups and better separation of outliers 
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occurred in the ordination diagrams with an increase in the character set. It is possible
that the incorporation of additional data might yield an additional improvement, although
we suspect that the 36-peak approach may be adequate. Taxonomic distances based on
36 versus 24 peaks were correlated at r = 0.898.

The ordination diagrams yielded a better visual representation of results than did the
phenograms. This was to be expected in view of the multidimensional nature of the data
and the distortions to which phenograms are prone. However, it is often helpful to examine
taxonomic distances by both ordination and cluster analysis [22].

The 10-peak data did not generate a classification entirely suitable to us. Only a small
spectral area was sampled by using only 10 peaks and not subdividing the spectrum. This
resulted in a poor heroin-phentobarbital cluster (Figs. 2 and 3) and a relatively diffuse
definition of barbiturates and amphetamines. The sets of taxonomic distances based on
10 peaks were correlated at only r 0.425 and r = 0.380 with distances based on 24
and 36 peaks, respectively. Principal component scores from the 24- and 36-peak studies
showed that characters from the first three areas of the spectrum (4000-2000, 2000-1500,
and 1500-1200) accounted for a large amount of variation among the drugs. Subdivision
of the spectrum (24- and 36-peak studies) and the inclusion of the area between 4000 and
2000 wave numbers prevented any one area of the spectrum from being too heavily
weighted in its contribution to the classification.

Twenty-four or, preferably, 36 pçaks (Figs. 5 and 7) should be used to classify JR spec-
tra in subsequent studies. Increasing the number of peaks between 1200 and 300 wave
numbers produced an improvement in the results. Factor scores for characters in this
area were low for the most part, indicating that they accounted for a small amount of
variation between the samples; however, the extra effort required to collect twelve addi-
tional readings was justified by an improvement in visual representation of the 36-character
results. It is likely that the increasing dimensionality of the distance matrix accounted for
the drop in matrix correlation and increase in stress observed in progressing from the 24-
character to the 36-character diagrams.

The time and effort required to record the locations of peaks manually and to punch
these data on cards were significant components of the present study. It should be possi-
ble to connect the JR spectrophotometer to a device that will generate digitized or punched
output suitable for direct read-in to the computer program used for classification [14].
The current limitation of NT-SYS to batch processing may require us in a subsequent
study to process via punched paper tape from the reading device through a conversion
program to disk or tape for storage, with subsequent output to cards for input to NT-SYS.

It is worth stressing that the aim of our study has been the class?fication of drugs rather
than their identification (see Ref 17 for further discussion of this distinction). Better defi-
nition of the major areas of spectra to be emphasized in data capture and of the major
clusters of drugs should lead us eventually to more efficient schemes of identification, in-
cluding automated keys.

Correspondence between chemical structure and taxonomic placement of the drugs is
noteworthy, especially as our approach involved observation of the entire IR spectrum
rather than a restricted data base of "most informative" peaks. The eventual recognition
of such peaks may allow us to pass from a structural to a functional study, for the greater
part of a drug's structural formula seems to have little effect on its functional toxicity.
If toxicologically active sites are differentially stimulated by IR, as seems likely, it should
be possible to analyze and visualize toxic relationships between drugs by using the ap-
proach described.

The intermediate place of diazepam was noted above. This drug has the
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group of OTUs 9 through 14, but it also has the extracyclic benzene ring of PCP and
phendimetrazine. The latter in turn has a

Ph—C-—C

/\
RR

arrangement as in OTUs 5 to 8, but in the 24- and 36-peak studies the possession of an
csOH group apparently pulls OTUs 4 and 8 together. The different ways in which chemical
structures may be drawn suggests that better information for data processing might be
obtained from X-ray crystallographic studies.

The present study has shown the feasibility of classifying representatives from a few
common drug groups, including amphetamines, barbiturates, and opiates. We consider
it worthwhile to progress to a larger study involving a much larger set, with several ex-
amples from all of the important drug groups. Future investigations should also include
mixtures prepared from two and three different drugs.
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